close
標題:

急!!!!!!!!!!!!!!!!!關於數學的問題,請在10分鐘內答!!!!!!!!!!!!!!!!!!

 

此文章來自奇摩知識+如有不便請留言告知

發問:

問題係: Find the mininium remeinder of n when it is devided by 2005: when n is devided by 902, the remainder is 602. when n is devided by 802, the remainder is 502. when n is devided by 702, the remainder is 402. 更新: sorry, plz note that n is positive number

最佳解答:

By the remainder theorem, F(x) = Q(x)?G(x) + R(x), n = 902?G(x) + 602 -(1) n = 802?G(x) + 502 -(2) n = 702?G(x) + 402 -(3) put (1) into (2), 902?G(x) + 602 = 802?G(x) + 502 100?G(x) = -100 G(x) = -1 put G(x) = -1 into (1), n = 902(-1) + 602 = -300 -300 = 2005(-1) + R(x) R(x) = 1705 therefore the minimum remainder of n when it is divided by 2005 is 1705. 可能錯...唔知岩唔岩...

其他解答:5C926699F268FE02
arrow
arrow
    創作者介紹
    創作者 yffuhxy 的頭像
    yffuhxy

    yffuhxy的部落格

    yffuhxy 發表在 痞客邦 留言(0) 人氣()