標題:
急!!!!!!!!!!!!!!!!!關於數學的問題,請在10分鐘內答!!!!!!!!!!!!!!!!!!
- Socke A(462)上的CPU,能不能裝在775上?
- 嘉義市有不錯的手錶店麼@1@
- (2)...韓文翻譯....關於CB的???
- RO的一些知識!-@1@
- 冷氣電費換算
- 不規則級距級函數設定@1@
- 僑光,英文系的問題
- 96年統測問題
- 從松山機場到五股工業區(公車)@1@
- EDEN 501 可以接CO2擴散桶嗎
此文章來自奇摩知識+如有不便請留言告知
發問:
問題係: Find the mininium remeinder of n when it is devided by 2005: when n is devided by 902, the remainder is 602. when n is devided by 802, the remainder is 502. when n is devided by 702, the remainder is 402. 更新: sorry, plz note that n is positive number
最佳解答:
By the remainder theorem, F(x) = Q(x)?G(x) + R(x), n = 902?G(x) + 602 -(1) n = 802?G(x) + 502 -(2) n = 702?G(x) + 402 -(3) put (1) into (2), 902?G(x) + 602 = 802?G(x) + 502 100?G(x) = -100 G(x) = -1 put G(x) = -1 into (1), n = 902(-1) + 602 = -300 -300 = 2005(-1) + R(x) R(x) = 1705 therefore the minimum remainder of n when it is divided by 2005 is 1705. 可能錯...唔知岩唔岩...
其他解答:5C926699F268FE02
留言列表