close
標題:
Maclaurin Series 1
此文章來自奇摩知識+如有不便請留言告知
發問:
Using the part of the Maclaurin series of cos x = 1 - x^2/2! + x^4/4! - x^6/6! + ... up to only the second term, i.e., the x^2 term, an approximate value of the integral√x cos(x^2)dx: [asnwer: 19/33] Detail: http://postimg.org/image/y11c4clin/
最佳解答:
cos x = 1 - x^2/2! cos(x^2) = 1 - x^4/2! sqrt x cos(x^2) = x^(1/2)[ 1 - x^4/2!] = x^(1/2) - x^(9/2)/2! ∫ sqrt x cos(x^2) dx = ∫ x^(1/2) - x^(9/2)/2! dx = 2x^(3/2)/3 - x^(11/2)/11 when x = 0 the integral = 0 when x = 1, the integral = 2/3 - 1/11 = (22 - 3)/33 = 19/33.
其他解答:
文章標籤
全站熱搜
留言列表