close

標題:

Maclaurin Series 1

aa.jpg

 

此文章來自奇摩知識+如有不便請留言告知

發問:

Using the part of the Maclaurin series of cos x = 1 - x^2/2! + x^4/4! - x^6/6! + ... up to only the second term, i.e., the x^2 term, an approximate value of the integral√x cos(x^2)dx: [asnwer: 19/33] Detail: http://postimg.org/image/y11c4clin/

最佳解答:

cos x = 1 - x^2/2! cos(x^2) = 1 - x^4/2! sqrt x cos(x^2) = x^(1/2)[ 1 - x^4/2!] = x^(1/2) - x^(9/2)/2! ∫ sqrt x cos(x^2) dx = ∫ x^(1/2) - x^(9/2)/2! dx = 2x^(3/2)/3 - x^(11/2)/11 when x = 0 the integral = 0 when x = 1, the integral = 2/3 - 1/11 = (22 - 3)/33 = 19/33.

其他解答:

arrow
arrow
    創作者介紹
    創作者 yffuhxy 的頭像
    yffuhxy

    yffuhxy的部落格

    yffuhxy 發表在 痞客邦 留言(0) 人氣()